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Abstract. An on-line learning rule, based on the introduction of a matrix momentum term, is
presented, aimed at alleviating the computational costs of standard natural gradient learning. The
new rule, natural gradient matrix momentum, is analysed in the case of two-layer feed-forward
neural network learning via methods of statistical physics. Itappears to provide a practical algorithm
that performs as well as standard natural gradient descent in both the transient and asymptotic
regimes but with a hugely reduced complexity.

1. Introduction

Feed-forward neural networks are widely used in classification and regression applications
mainly due to their ability to learn continuous and discrete input—output maps [1]. Here we
concentrate on learningtaachermap fg, from an input spacé € R" onto a scalat, by
modifying the parametet$ of astudentnetwork according to some training algorithm, aimed

at bringing the student mafy as close as possible .

On-line learningis a popular method for training multi-layer feed-forward neural networks,
where network parameters are updated according to only the latest in a sequence of training
examples. This is contrasted to batch learning which utilizes the entire training set at each
learning iteration. On-line methods can be beneficial in terms of both storage and computation
time, and also allow for temporal changes in the task being learned (for an overview of on-line
learning methods in neural networks see [2]).

Natural gradient (NG) learning [3] was recently proposed as a more principled alternative
to standard on-line gradient descent when learning the parameters of some probabilistic model.
Itis based on exploiting the Riemannian structure of the likelihood manifold in order to optimize
the learning dynamics. For parametric models the Riemannian metric is given by the Fisher
information matrix. The idea is to re-weight the various gradient directions by pre-multiplying
the standard gradient with the inverse of the Fisher information matrix, converting the covariant
gradient into contravariant form.

On-line NG learning was proved to be Fisher efficient [3], implying that it has
asymptotically the same performance as optimal batch parameter estimation; moreover, it
was shown to provide improved transient performance in comparison with standard gradient
descent (GD), with improved learning time as task complexity increases [4].
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NG learning has been used successfully in a variety of applications, especially in the
increasingly important field of independent component analysis [5]. However, in many
practical applications there will be an increased cost required in estimating and inverting the
Fisher information matrix. Determining this matrix on-line is difficult as it requires an average
over the input distribution in order to calculate it. Even if the Fisher information matrix can
be computed on-line, inverting it will be computationally costly, especially for large networks.
This is particularly undesirable as computational efficiency is one of the principal reasons for
using on-line methods.

An on-line matrix momentum (MM) algorithm [6, 7] was recently introduced in order
to estimate and invert the Hessian matrix efficiently on-line, obtaining asymptotically similar
performance to Newton’s method. We propose to use a similar method to estimate and invert
the Fisher information matrix for obtaining similar performance to that of NG learning. This
method is particularly efficient since the inversion is replaced by a matrix-vector multiplication
which can be easily carried out. In addition, the true Fisher information matrix will, in general,
be unknown and should be estimated by some method [3]; this algorithm employs a single-step
estimation of the Fisher information matrix which can be determined on-line.

The algorithm is analysed within the statistical mechanics framework [4, 7-9], which
is exact for large networks and enables us to examine various properties of the algorithm
throughout the learning process. We formulate the problem in terms of macroscopic variables
and derive a set of coupled ordinary differential equations which can then be solved numerically.
Thisformalismis used to compare the efficiency of the proposed MM natural gradient algorithm
(NGMM) with that of standard GD and standard NG in training two-layer networks. The
new method turns out to provide a significant improvement over GD learning but with some
sensitivity to parameter choice, due to the noisy Fisher information estimate.

In the asymptotic regime one can solve the dynamics analytically for the generic case
of a noisy isotropic task. The dependence of the generalization error decay on the network
architecture and parameter choice is then derived, providing the optimal and critical asymptotic
training parameter values. For the appropriate parameter choice we find NGMM to provide
the same asymptotic performance of NG learning (equalling the best batch algorithm), and a
significant reduction in learning time when compared to GD.

The paper is organized as follows. The NG learning algorithm is defined in section 2.
Section 3 briefly introduces the statistical mechanics formalism and section 4 is devoted to the
derivation of the MM method. The NGMM algorithm is proposed in section 5. We then present
numerical studied of transient regime (section 6) and rigorous analysis of the asymptotic phase
(sections 7 and 8). Our conclusions are described in section 9.

2. Natural gradient

Consider a mapping from an input space R" onto a scalap;(§) = Zleg(Jl.Tg), which
defines a soft committee machine (termedshelentnetwork), wherel = {J;}1<i<k is the

set of input to hidden weights and the hidden to output weights are set to one. We choose
g(x) = erf(x/+/2) to be the activation function of the hidden units. We can then define a
Gaussian noise model for outpgyt given input¢ which is parametrized by,

1 —(m — ¢J(£))2>
exp| —————>—). 1
o p( i )
Let (¢, ¢*) be theuth input—output pair in a sequence of training examples. The activation

of the student hidden nodeinder presentation of the input patterhis denoted:/ = JT¢".
The training error at each learning iteration is taken to be proportional to the log-likelihood of

pr(ml&) =
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the current example under our noise modglz#, ¢*) = %(g“ — ZiKzl g(xlf‘))2 and the most
basic learning algorithm is to adapt the student weights in the negative gradient direction of
this error at each iteration. But, since the probability manifold is not Euclidean, the ordinary
gradient does not give the steepest direction of the error function. A more principled learning
algorithm can be defined by viewing the manifold of models as a Riemannian space in which
local distance is defined by the KL-divergence. The Fisher information métridefines the
appropriate metric in this space [10],

G = (V109 ps(¢ml€)) (Vs 109 ps(ZmléNT) )

where the brackets denote an average @wgraccording to equation (1), followed by an
average over the input distribution. L&t be a block(i, k) of the Fisher information, which
for our network is:

1
Gt = — (Ax(©) g where Ay (€) = g'(x/)g (x}))ee" ®3)

m
where the prime indicate the derivative with respect to the argument. The natural gradient
direction is found by pre-multiplying the training error gradient by the inverse of this matrix.
When components of inpugd' are selected independently at each iteration from a zero-mean
Gaussian distribution with unit variance, the matéixcan be computed analytically, and for
our particular choice of the activation function it turns out [4] to be:
T T T T
(A () ) = 2 [I A+ 0w + A+ Qi) I, — Qu(Jidy + i J; )] @)
L NINT Ak

with Qi = JTJ and Ay = (1 + Qi) (1 + Q) — 07

When the input distribution is unknown, we should estimate the avetAge&s)) s, on
the basis of an empirically estimated distribution. However, it is difficult to implement the NG
method as an on-line algorithm in this way. In some cases it will be possible to estimate the
input distribution on-line, and Yang and Amari [10] discuss methods of preprocessing training
examples to obtain a whitened Gaussian process for the inputs in this cagé.>aK this
gives efficient inversion, but the method will not be applicable in general. In order to define
a practical on-line algorithm with an unknown input distribution which is far from Gaussian,
we need some approximation to the Fisher information matrix which can be determined on-
line. The simplest approximation is to use the single training example estimation discussed in
section 5.

3. General framework

We use a statistical mechanics description of the learning process [8] which is exact in the limit
of large input dimensioV and provides an accurate model of mean behaviour for realistic
values ofN.

Training examples are of the for(g", ¢*), as introduced in the previous section, where
uw =1,2, ... labels each independently drawn example in a sequence. We consider a case
where the output* is provided by a teacher which may be corrupted by Gaussian output
noise and is of a similar configuration to the student except for a possible difference in the
number,M, of hidden units¢* = fozlg (B,Ig“) +p*, whereB = {B, }1<,<u iS the set of
input to hidden adaptive weights for teacher hidden nodegérngizero-mean Gaussian noise
of variances?. Due to the flexibility of this teacher mapping we can represent a variety of
learning scenarios within this theoretical framework [1]. The activation of hiddenmivdae
teacher network under presentation of the input pagéis denoted,’ = BT ¢/*. We will use
indicesi, j, k,l = 1... K toreferto units in the student network amdn = 1... M for units
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in the teacher network. For on-line standard GD the learning rulg{§' = J* +n/Ns"¢",
wheres!' = g'(x!)[ YL g () — Y5y g(x}) + p#] and the learning rate has been scaled
with the input sizeV. In the NG algorithm the weight update at each iteration is given by:

K
T =3+ LY SA©)E" ®)
=1

Notice that knowledge of the teacher noise variance is not required to execute this algorithm.
Assuming a Gaussian input distribution it is then possible to derive equations of motion,
for both gradient descent [8] and natural gradient learning [4], for a set of order parameters
(xixj> = J,'TJk = Qity (Xiyn) = J,T-Bn = Riu, and(ynym> = B,;I—Bm = Lam, measuring
overlaps between student and teacher vectors. These order parameters are necessary and
sufficient to determine the generalization ewpe= (€;(¢*, £*)). The equations of motion

are in the form of coupled first-order differential equations for the order parameters with
respect to the normalized number of examples /N and can be integrated numerically to
determine the evolution of the generalization error. In the following sections we will show how
the inclusion of an extra set of order parameters allows us to write a closed set of equations of
motion for NGMM learning.

4. On-line MM

A heuristic which is sometimes useful in batch learning is to include a momentum term in the
basic GD algorithm. For on-line GD learning with momentum we have

T = gt Later + Ot — I, (6)

This equation defines a second-order process, in which weights from the two previous
iterations are required for each update. An equivalent first-order process can be defined by
introducing [11] a new set of variabl€d' = N(J/* — J" ™),

1
F =gt Daren e Lgor o= palt e, ™

An interesting behaviour is observed if we chooge~ O(1/N) and (1 — 8) ~
O(1/N) [11]. If we definen = /N and8 = 1 — y /N, then takingy — oo and — oo
simultaneously while keeping their ratio finite we obtain a dynamics equivalent to GD with
an effective learning rate o = 77/y. In fact, we find thayy does not have to be very large
before this behaviour is observed.

In figure 1@) we compare the standard gradient descent with gradient descent with
momentum term, for a two-node network learning from noiseless examples generated by a
two-node teacher network with orthonormal vectdfs,(= §,,,). The dashed curves show
results of learning with momentum tenjgy = 7/y = 1.666 andy = 0.6, 1, 3, 7 fromright to
left (the last dashed curve is almost obscured by the solid curve).idseases, the trajectory
converges onto standard GD with learning rate 1.666 (solid curve).

Another interesting limit is; — 0 andy finite or y — 0 while keeping the ratio
r = 7/y? < y (as may occur in some annealing schedules). In this case, consistently with
the analysis in [12], the evolution of the momentum varialf¥etmkes place on a much faster
timescale then the evolution of the weiglks Using adiabatic elimination, it can be shown
that the dynamics is again equivalent to standard GD with an effective learninggater /y .

This effect is demonstrated in figuren)(showing the asymptotic performance of gradient
descent with momentum whep is annealed as 1, for a two-node network learning a
noisy 2 = 0.01) isotropic task of similar configuration. We use GD learning initially
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Figure 1. (a) The solid curve shows the generalization error for standard GP-atl.66, for a
two-node network learning a noiseless isotropic téEk, = 8,,). We compare it with results
for gradient descent with a momentum term, with the coefficiénts1.666y andy = 0.6 (dot-
dashed curve)y = 1 (dotted curve)y = 3 (dashed curve); = 7 (double-dotted curve), the last
line is almost obscured by the solid curvéds) Asymptotic performance of GD with momentum

y when the learning rat§ is annealed as/& is compared with standard GD with a learning
raten = 7/y, for a two-node network learning and noisy example$ & 0.01) generated by
an isotropic teacher of similar architecture. All curves were initially obtained by using standard
GD until the asymptotic regime is reached. The momentum term was activateg &80, with
different values ofy = 0.01, 0.2, 0.5, 2, 5, and annealed learning raje= y 1.666 /(¢ — 180).

All curves, except the one with = 0.01 (dotted curve), collapse onto the GD asymptotic decay
with learning rate; = 1.666/(« — 180) (solid curve).

and then, atx = 280, we incorporate a momentum term and anneal the learning rate
n = [y 1.666/(«¢ — 180)], using different values of = 0.01, 0.2, 0.5, 2, 5. We find that all
curves collapse on the GD asymptotic decay with learningrratel.666, with the exception
of y = 0.01 (dotted curve) which is not large enough with respect to the parametéy/y 2.

Choosing a MM parameter of the form

kA , k1o
B=1-— with =y (8)

one expects the effectivaatrix learning ratejer = 1, A -1, whenk is large or with vanishing
N«, IN correspondence to the phenomena observed for scalar momentum.

An analysis of the dynamics in the case whekés the Hessian matrix was carried out
in [7], showing that matrix momentum provides an efficient inversion of the Hessian matrix.
As k increasek = 2 is sufficient), the trajectory converge onto the on-line Newton’s method
result, as desired. Similarly, setting proportional to the Fisher information matrix and
makingk large orn, very small, we expect to retrieve NG learning.

In the following section we derive a set of coupled differential equations which describe
the learning process dynamics wharis proportional to a single-step estimation of the Fisher
information matrixA = [A;;(£)].

5. Natural gradient MM

NG learning provides improved performance over standard GD during both transient [4] and
asymptotic stages of learning [3]. However, in practical applications there will be an increased
cost required in estimating and inverting the Fisher information matrix.
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In order to define a practical on-line algorithm in the case when the input distribution
is unknown, we need some approximation of the Fisher information matrix which can be
determined on-line. The simplest approximation is to use a single training example estimate,
i.e., we no longer average the expressions in equations (2) and (3). To achieve an efficient
matrix inversion, we propose to use the MM algorithm using the Fisher information single-step
estimate:

1
S LR (I AR L AR L

_,_ kA _ ko _TA
where B8=1 N n=— A =[Ay(©)]
and A6 = g (xIg'(xfHee. ©)

To solve the dynamics we define, as in [11], a new set of Gaussian fields related to the
momentum variabl@; : z/' = Q¢*, and anew setof order parameters relating the momentum
variables:(z;zi) = Q] U = Ci, (ziya) = QI B, = Dy, and(x;zx) = J'Q = Ej;.

In the largeN limit the order parametef®, R, C, D, E} provide a closed set of coupled
differential equations which determine the dynamics

dQix dR;,
= Ej + Ey; = D,
do T E da
dc;
o = k{08 = @z + (ude — Gu)z) + K2 0nad; — 80 (nadic — $0)) - (10)
dDin dEik
o - k(i — di)yn) —— = Cix + k(oS — Pr)x:)-
o da

Here, we have defineg;, = ¢'(x;) Zj z;g'(x;). The angled brackets denote averages over
inputs, or equivalently averages over the field variaklesy,, z;} which can be carried out
explicitly to provide the equations of motion (see appendix A). The generalization error can
be calculated straightforwardly within this framework [8] and depends only on the order
parameter®);, andR;,.

Note that the stochasticity comes in through the term proportior&kitoin equation (10)

(for dC;,/do) which is proportional to the input variance and contains an additive contribution
proportional to the output noise variance.

The differential equations (10) can be integrated numerically for any numbiéstident
and M teacher hidden units. However, for the remainder of the paper, we will focus on the
realizable case = M) and uncorrelated isotropic teach&s, = 5.

For random initialization of the weights (and setting the initial momentum to zero) the
resulting normg);; of the student vector will be order(®), while the overlap®);.; between
different student vectors and between student and teacher &gtaill be only O(1/v/N).

So, we initializeQ;; from uniform distributions in the [00.5] interval, Q;« and R;, from
[O, 10_3], andC;, = D;, = E;;, = 0.

In figure 2 we show the evolution of the order parameters and the generalization error
for n, = 0.05 andk = 1.0, for a two-node network learning a two-node isotropic task
(Tum = d.m) in the absence of noise. As for standard GD and NG learning, the NGMM
dynamics is characterized by two major phases of learning. Initially, the order parameters
are trapped in an unstable fixed point characterized by a finite generalization error and a lack
of differentiation between the hidden nodes of the student. The overlaps of each student
node with all teacher noddg,, are nearly identical, i.e., each student unit imitates all teacher
nodes with similar success. Likewise, all the order paramddgrare almost identical. All
the student overlap®,.., have nearly the same value which does not differ much from the
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Figure 2. NGMM learning for a two-node network learning from examples generated by a two-
node isotropic teachef’f,, = §,,,) in the absence of noise. The generalization error is shown in
(a), the student-student;; and student—teachdy, overlaps in ) and €), respectively, while the
momentum-student;;, momentum—momentur@;;, momentum—teacheb;, overlaps in ¢)—

(f) respectively. The learning rate was fixedrgt = 0.05, k = 1, and initial conditions were
Qizk, Rin = U[0,107%], Q;; = U[0,0.5], Cix = Dy, = Ey = 0. A brief stage of GD is used
before NGMM was activated.

value of the norm®;;, i.e. the student vectors are highly correlated with each other. Similar
considerations hold for order paramet€is and E;;.

Eventually, small perturbations introduced by the random initial conditions lead to an
escape from this phase and convergence towards zero generalization error. The convergence
phase is characterized by a specialization of each student node to a particular teacher node,
which corresponds to an evolution of the order parameafgrandR;, to their optimal value
T, and the remaining order parametésg, E;;, C;; to zero. In the following two sections
we consider each phase in turn.

6. The symmetric phase

It has recently been shown that trapping time in the symmetric phase is significantly reduced
by using natural gradient descent, in comparison with standard gradient descent, and exhibits
a slower low power increase as task complexity grows [4].

In figure 3@) we compare the performance of on-line NGMM with that of NG learning in
which the averaged Fisher matrix has been explicitly inverted [4], for the noiseless isotropic
case ofK = M = 2. lIdeally, we would wish for the curves to approach the true NG
result (solid curve) for largé values. However, ak increases, fluctuations in the single-
step Fisher information matrix estimate (due to input randomness) become significant and the
weight vector norms diverge, followed by the other order paraméger®, C, D, E} and the
generalization error (dashed curies= 2.0).

We see that choosing too small ¢ = 0.5, dotted curve) may lead to long transient
times, however, as we approach intermediate valkes (.4, dash-dotted curve) we obtain
good performance that provides an improvement over GD learning, especially in noisy and
overealizable tasks.

As the specific choice of parameters may have bearing on these results we compared the



4054 S Scarpetta et al

e, I €, |
ool @ | Sood
0.05 0.02}*
% 50 100 150 200 %

Figure 3. (&) The generalization error achieved by MM with single pattern estimates of the
Fisher information matrix and various training parameterg; = 0.15, andk = 0.5 (double-
dotted curve)k = 1.4 (dot-dashed curve), = 1.8 (dotted curve)k = 2.0 (dashed curve), is
compared with that of natural gradient descent (solid curve) in the same training scerar@l(5,

K = M = 2 and noiseless data). We see that the NGMM transient performance is worse than
that of NG although it can be improved by the appropriate parameter chdiyéVe( compare

the result of NGMM (dash-dotted curve),= 1 andnest = 0.08 annealed from the end of the
symmetric phasek = M = 2 and Gaussian output noise variang& & 0.1) with those obtained

for optimal gradient descent (w.r4-dashed curve) and optimal natural gradient descent (w-r.t.
solid curve). We usé&,,, = 8,,,, and initial conditiong; ., R;, = U[0, 1(T3], Qi = UJ0,0.5],

Cikx = Din = Eix =0.

results obtained for NGMM (not optimized) with those obtained with the optimal GD and
optimal NG learning, using the variational method of [9]. In figur®)3fe compare the
NGMM method with the single pattern estimate=£ 1, ner = 0.08, dash-dotted curve) with
optimal GD (dotted curve) and optimal NG learning (solid curve), for a noisy tkisk (M = 2
ando? = 0.1), showing a reduction in learning time over optimal GD but not equalling the
performance of NG learning.

7. The convergence phase

NG learning has been shown to be asymptotically optimal in the presence of output noise
and with annealed learning rafe= 1/«, equalling, in performance, the best possible batch
algorithm.

To examine the performance of NGMM in figuread(we show the asymptotic
performance for a two-node teacher—student learning scenario and isotropic task in the presence
of noise 62 = 0.01) and various values & The NGMM performance is compared with that
of NG learning [4] (taking the forna, ~ Ko2/2c, lower dotted curve, equalling the optimal
Bayes and maximum likelihood predictors [13]), and to that of optimal GD [14] (upper dotted
curve). We see that NGMM asymptotic performance lies between the the optimal bound and
the optimized GD asymptotic decay. We see that the prefactor of the asymptotic decay for
single pattern NGMM decreases withconverging close to the optimal bound for small values
(although it takes longer to reach the asymptotic regime in this case).

Infigure 4p) we show that annealirigmay resultin a trajectory which converges rapidly to
the optimal decay, providing a significant improvement over optimal GD. The training scenario
is similar to the one of figure 4f except thak is annealed asymptotically( > «, = 800)
ask = k,/(1 +k,(a — ,)*%). The specific choice of power law decay will be discussed in
section 8. It would be interesting to find the optimal decay schedule that will bring NGMM
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Figure 4. Generalization error decay for NGMM: the dotted curves show the optimal GD
asymptotic decay (upper dotted curve), and the universal batch asymptotic bound (lower dotted
curve), for a two node network learning an isotropic tégk = §,,, of a similar configuration, in

the presence of Gaussian output noise £ 0.01). (@) Asymptotic performance of NGMM with

k = 0.3 (solid curve) .k = 0.7 (dashed curve) and = 1.4 (dot-dashed curve).b Asymptotic

decay whert is annealed fron > «, = 800 ask = k,/(1 +ko(c — )%%).

as close as possible to the NG asymptotic performance.

8. The asymptotic dynamics—an analytical solution

To obtain an analytical solution in the asymptotic regime we now examine the asymptotic
dynamics of NGMM in a noisy isotropic task with annealed learning nate- no/«. The
number of dynamical variables in equation (10KiéK + 1) + K2 + 2K M, so that the analysis
becomes more difficult a& andM grow. However, the symmetric architecture of the teacher
networkT,,, = 3, and the task realizabilitk' = M lead to the grouping of the dynamical
variables. Hence, in the asymptotic regime the system’s dynamics can be described in terms
of only ten variables, via the ansatz:

Oir = Q 8 + Q (1—8i)

Riy =R iy +R (1—6;,)

Ey=E sy +E (1—8y) (11)
Cix=C8x+C (1—8y)

Diy = D 8+ D (1 - 53).

To solve the asymptotics of the reduced dimensional system, we expand the equations
of motion (10) to first order about the asymptotic fixed poir@,, = R, = 1 and
Es = Coo = Doo = Eoo = Coo = Dy = O = Rs = 0. Moreover, we exploit
the fact that the resulting equations for the various variables evolve in different timescales
(0, 0, R, R decay asymptotically as/& while the momentum order parameters all evolve
on a faster timescale, decaying a&3) to reduce the system even further.

Using adiabatic elimination for the fast variables and we find four linear coupled
differential equation for the slow order parameters represented by the wector

d
—u = naMu+ngo'2b (12)
do
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whereu = (0 — Qo O — Ooo, R— Roo, R— Ro)T = (¢, G, 1, )T, o2 is the noise variance,
ne = No/a, the vectomw is a function ofk and of the network siz& , andM is

3 0 4 0
0 -2 0 2
M=1_12 0 0o ol (13)

0 0 0 -1

The asymptotic equations of motion (12) are derived by dropping termspf| @||?)
and higher, and terms of @w). The latter are linear in the order parametersut they
are negligible in comparison to thgw andn20-2b terms in equation (12) as — oo. These
equations can be exactly solved following [14].

If A; are the eigenvalues of the matri¢, and D is the matrix of the eigenvectors, such
that

A 0 0 0
D‘lMD=|: } (14)
0 0 0 X4
then the solution of equation (12) is:
w(@) = D Lo, 2p) D™ u(o) +02 D O(e, 0) D71 b (15)
whereL (a, ag) and® (a, o) are diagonal matrices, whose elements take the form:
o Ao _77(% -1 Aino ~,—1=2ino
Lii(a, ap) = o and O;i (o, ag) = 1"'—)»1‘770[(1 —a" Py 1. (16)

Since the first contribution in equation (15) depends on the actual initial conditiof3, and
since we are interested in the asymptotic regime, we will ignore it in what follows (it decays
more rapidly than the second contribution).

As we are mainly interested in the generalization error decay rate we expand the
generalization error to the second ordei:in

2
GZS}'=£|:£ <1-q—r>+(l(—1) (}é_;)_ (2}’ Q) +¢](” CI)
7 | /3\2 2 12./3 3V/3
+ (K4 1)q(é _ f)} . a7
Using the solution equation (15) the generalization error can be rewritten as a combination of
the mode®9;;, whose coefficients are functions of the system &izand of the parametér.
We find that only two modes,, and ®44, associated with the eigenvalues= 14 = —2,
survive in the linear terms of the generalization error. The méleand®33 associated with
the eigenvalues; = A3 = —1 are orthogonal to the first-order terms in the generalization
error, and therefore do not contribute to their decay, but contribute only the decay of the
second-order term with the corresponding eigenvalugs8d 2.5.
The critical learning ratey,;;, above which the generalizatioff™” decays as /A is
therefore:

1 1}_1

vir =Max{ ———, —— t = =
Nerit { 21 o

=5
For no > n.i; We can ignore the second-order terms in the generalization error (they
decay as Ax?), finding an asymptotic error of the form:

g

€Y = o2 folk, K)— 2@
& fo (—X2mo— 1)

1
= o?fo(k, K) fin0) = (18)
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Figure 5. (a) The prefactor of the asymptotic generalization error decay, as a functibnaf
N0 = Nopr = 1, with K = M = 2 (solid curve) K = M = 3 (dot-dashed curve) arkl = M = 4
(dotted curve). The prefactor divergekat k.,i; (K). (b) k.rir @s a function oK. In the inset we
show the prefactor of the asymptotic decay as a functioki @thenk = 0 (straight line)k = 0.5
(dashed curve) and= 1 (dotted curve).

For optimal decay of the asymptotic error we minimize the prefactor faf h
equation (18). Since the prefactor can be factorized we can separately optimize the learning
rateno and the momentum parameterBy minimizing f1(no) we find that the optimal value
of no is alwaysn?f"r =1, independently from the value &f andk; this is the same annealing
schedule;, = 1/« that is optimal for NG learning [3]. In contrast, we stress that the optimal
learning rate for GD is also inversely proportionaktpbut the optimal prefactary depends
on K in a nontrivial manner [14].

The sensitivity of the generalization error decay prefactor to the choikésothown in
figure 5@) for K = 2, 3, 4. We find that the prefactor is minimal &t= 0, independently
of the value ofK. The prefactor increases asncreases and divergesiat= k., (K) (see
figure 5p)). Fork > k.., the asymptotic regime is never reached. The asymptotic result for
no = 1 in the limitk — O takes the very simple formy, ~ Ko2/2a, shown as a straight line
in the inset of figure 3), equalling the NG result and the optimal batch bound.

The picture that emerges is tikanust be quite large in the transient, but should be annealed
asymptotically such thdt — 0 whena — oo. One might expect that tHeannealing cannot
be faster or equal t@~%/?, since one expects the ratio= (kn,)/(k)? to be small with respect
to k (see section 4) to obtain an effective matrix inversion from this method. Indeed, we
see from numerical experiments that annealiras o* with x > % leads to uncontrolled
behaviour (the generalization error starts to increase and the order parameters diverge) while
annealing schedules of the for~ 1/a* with x < % lead to very good performance and a
rapid convergence of the generalization error to the optimal bound (figh)e 4(

The influence of the noise variance on the generalization error can be seen directly from
equation (18): the noise variance is just a prefactor in thedecay and neither the critical
nor optimal values forg andk are influenced by it.

9. Conclusions

The NG learning algorithm is efficient and provides a significant improvement over
conventional on-line training methods; however, its complexity is generally high due to the
computation required for estimating and inverting the Fisher information matrix. These can be
achieved efficiently for Gaussian, or near-Gaussian input distributions [10] but may be difficult
to carry out in practice, where the input distribution is significantly different.
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We exploited the statistical mechanics based theoretical framework to study the efficiency
of a new learning algorithm. A single pattern estimation of the Fisher information matrix is
employed and the MM method is used to achieve an effective matrix inversion. The proposed
algorithm provides a practical and computationally cheap approximation to NG learning.

Analytical results indicate that this approximation is efficient, especially in the asymptotic
regime, but shows some sensitivity to the choice of parameters in the transient. However, if the
appropriate parametefsandk are chosen in the transient, this algorithm provides a significant
reduction in the length of the symmetric phase over GD learning, although not equalling the
performance of the NG learning. In standard noisy tasks it provides the optimal asymptotic
performance when the learning ratenis = 1/« andk is annealed no faster tharf(dd'/?,
equalling in performance NG learning and the best batch algorithm.

We believe that the sensitivity to the choicekdt due to noise in the Fisher information
matrix estimate. It will be useful to consider more sophisticated on-line approximations to the
Fisher information matrix, which may provide greater robustness to the choice of parameters.
The present formalism provides a useful theoretical framework in which new approximations
may be considered.
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Appendix A. NGMM dynamical equations

The differential equations for the evolution of the order parameatgts R;,,, Cix, Din, Eix

are calculated by explicitly carrying out the averages that appear in equation (10) over the
activation fields{z, z, y}, that are taken from a multivariate Gaussian distributed with zero
mean and covariance matidxgiven by

O E R
g= |:ET C Di| ) (19)
R" D' T
Equations (10) then take the form:
dQix dRi,
= Eix + Exi = Diy
do £ k do

dc;
Tdk = anal:ZA3(xi» Zks Ym) — ZA3(xi» Zks Xj)} - ZkZ Ba(xi, xj, 2, 2k)
m J J

+kZn |: D AaCxi, Xi, Yo ) + D Aa(xi, xi, X1, X))

mn lj

—ZZ Ag(xi, Xis X1, ym)] + kZZ Be(xi, xj, Xi, X1, 255 21) (20)

ml Jjl

—2k2na[z Bs(x;, Xj, Xks 25 Yu) — Z Bs(xj, Xj, X, 2, x/)]

jn Jjl

dab;,

do = kna Z A3(xi’ Yns ym) - Z A3()C,‘, Yns xj) —k Z BA(X,‘, XjsZj, yn)
m J J

dE;;
5 = Ci +kna[;A3(x,-,xk, Ym) — ;Ag(xi,xk,x,)] - k; Ba(xi, Xj, 2j, Xp).-
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Where we have used the following notation:

Az(ug, uz, ug) = (g’ (u1)uzg(us))

Ag(uy, uz, uz, ug) = (g'(u1)g' (u2)g (uz)g (ua))

Ba(uy, uz, uz, ug) = (g'(u1)g'(uz)usus) (21)
Bs(u1, uz, uz, ug, us) = (g'(u1)g' (u2)g (uz)uag(us))

Bs(u1, uz, uz, ug, us, ug) = (g'(u1)g' (u2)g'(us)g'(us)uste)).

The variables; represent members éf, z, y} and the index! in A; andB,; denote averages
overd variables.

It is a property of multivariate Gaussian distributions [8] that integrals of reduced
dimensionality like A3(x1, x1, z2) are generated from the general foua(u, uz, uz) by
projection of the covariance matigkonto the relevant subspace (in this c8sg,» = Gu1..1 =
Guou2 = 011, Guzuz = C22, and G143 = Guzuz = Ep2). All the integrals (21) can be
carried out analytically, so that equations (20) give rise to a closed set of differential equations.
Additional details on the calculations and the numerical results can be found in [15].
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